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Abstract

Several well-known open questions (such as: are all groups sofic/hyperlinear?) have a common form:
can all groups be approximated by asymptotic homomorphisms into the symmetric groups Sym(n)
(in the sofic case) or the finite-dimensional unitary groups U(n) (in the hyperlinear case)? In the
case of U(n), the question can be asked with respect to different metrics and norms. This paper
answers, for the first time, one of these versions, showing that there exist finitely presented groups

which are not approximated by U(n) with respect to the Frobenius norm ‖T ‖Frob =

√∑n
i, j=1 |Ti j |

2,

T = [Ti j ]
n
i, j=1 ∈ Mn(C). Our strategy is to show that some higher dimensional cohomology

vanishing phenomena implies stability, that is, every Frobenius-approximate homomorphism into
finite-dimensional unitary groups is close to an actual homomorphism. This is combined with
existence results of certain nonresidually finite central extensions of lattices in some simple p-adic
Lie groups. These groups act on high-rank Bruhat–Tits buildings and satisfy the needed vanishing
cohomology phenomenon and are thus stable and not Frobenius-approximated.
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1. Introduction

Since the very beginning of the study of groups, groups were studied by looking at
their orthogonal and unitary representations. It is very natural to relax the notion
of a representation and require the group multiplication to be preserved only up to
little mistakes in a suitable metric. First variations of this topic appeared already
in the work of Turing [52] and later Ulam [53, Ch. VI]. This theme knows many
variations, ranging from sofic approximations as introduced by Gromov [26] and
operator-norm approximations that appeared in the theory of operator algebras
[10, 15] to questions related to Connes’ Embedding Problem; see [16, 38, 48] for
details. In each case, approximation properties of groups are studied relative to a
particular class of metric groups. More specifically, let Γ be a countable group
and let (Gn, dn)

∞

n=1 be a sequence of metric groups with bi-invariant metrics dn .
We say that Γ is (Gn, dn)

∞

n=1-approximated if there exists a separating sequence
of asymptotic homomorphisms ϕn : Γ → Gn , that is, a sequence of maps ϕn that
becomes multiplicative in the sense that

lim
n→∞

dn(ϕn(gh), ϕn(g)ϕn(h)) = 0, for all g, h ∈ Γ,

which is also separating, that is, dn(ϕn(g), 1Gn ) is bounded away from zero for all
g 6= 1Γ ; see Section 1.4 for precise definitions. Several examples of this situation
have been studied in the literature (see [3] for a survey):

(i) Gn = Sym(n), the symmetric group on an n-point set, with dn the normalized
Hamming distance. In this case, (Gn, dn)

∞

n=1-approximated groups are called
sofic; see [26, 38].

(ii) Gn , an arbitrary finite group equipped with any bi-invariant metric. In
this case, approximated groups are called weakly sofic, or C-approximated,
depending on a particular restricted family C of finite groups. An interesting
connection to profinite group theory and recent advances can be found in
[25, 34].

(iii) Gn = U(n), the unitary group on an n-dimensional Hilbert space, where
the metric dn is induced by the normalized Hilbert–Schmidt norm ‖T ‖HS =√

n−1
∑n

i, j=1 |Ti j |
2. In this case, approximated groups are sometimes called

hyperlinear [38].

(iv) Gn = U(n), where the metric dn is induced by the operator norm ‖T ‖op =

sup
‖v‖=1 ‖T v‖. In this case, groups which are (Gn, dn)

∞

n=1-approximated
groups are called MF; see [15].
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(v) Gn = U(n), where the metric dn is induced by the unnormalized Hilbert–
Schmidt norm ‖T ‖Frob =

√∑n
i, j=1 |Ti j |

2, also called Frobenius norm. We
will speak about Frobenius-approximated groups in this context.

Note that the approximation properties are local in the sense that only finitely
many group elements and their relations have to be considered for fixed ϕn . This is
in stark contrast to the uniform situation, which—starting with the work of Grove–
Karcher–Ruh and Kazhdan [27, 29]—is much better understood; see [14, 17].

Well-known and longstanding problems, albeit in different fields of
mathematics, ask if any group exists which is not approximated in either of
the above settings. In setting (i), this is Gromov’s question whether all groups
are sofic [26, 38]. The similar question in the context of (iii) is closely related to
Connes’ Embedding Problem [16, 38]. Indeed, the existence of a non-hyperlinear
group would answer Connes’ Embedding Problem in the negative. In [10],
Kirchberg asked whether any stably finite C∗-algebra is embeddable into a norm
ultraproduct of matrix algebras, implying a positive answer to the approximation
problem in the sense of (iv) for any group. Recent breakthrough results imply that
any amenable group is MF, that is, approximated in the sense of (iv); see [47].

In this paper, we want to introduce a conceptually new technique that allows
us to provide groups that are not approximated in the sense of (v) above, that is,
we show that there are finitely presented groups which are not approximated by
unitary groups {U(n) | n ∈ N} with their Frobenius norm. Our techniques do not
apply directly to the context of (iii), so we cannot say anything conclusive about
Connes’ Embedding Problem, but since the norms in (iii) and (v) are related by
a normalization constant, we believe that we provide a promising new angle of
attack.

Before we start out explaining our strategy and some notation, let us state the
main results of this article.

THEOREM 1.1. There exist finitely presented groups which are not Frobenius-
approximated.

The groups we construct are central extensions of cocompact lattices in simple
p-adic Lie groups. Specifically, we can take certain central extensions of U(2n)∩
Sp(2n,Z[i, 1/p]) for n > 3 and p a large enough prime.

To prove Theorem 1.1, we use the notion of stability: A group is called (Gn,

dn)-stable if every asymptotic homomorphism (not necessarily a separating one)
is ‘close’ to a true homomorphism (see Definition 1.9). Now, if Gn = U(n) and Γ
is (Gn, dn)-approximated and (Gn, dn)-stable, one easily deduces that Γ must be
residually finite. This basic observation suggests a way to find nonapproximated
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groups: find a group Γ which is stable but not residually finite. This method has
failed so far for two reasons: (1) it is very difficult to prove stability directly
and (2) even in the case where stability was proven (see, for example, [4] and
the references therein as well as [8]), it was proven in a way that completely
classifies asymptotic homomorphism and it is shown that all are close to a genuine
homomorphisms. Thus, only groups which are already approximated have been
shown to be stable so far. The main technical novelty of our paper is the following
theorem which provides a sufficient condition for a group to be Frobenius-
approximated without assuming a priori that the group is approximated.

THEOREM 1.2. Let Γ be a finitely presented group such that

H 2(Γ,Hπ ) = {0}

for every unitary representation π : Γ → U(Hπ ). Then, any asymptotic
homomorphism ϕn : Γ → U(n) with respect to the Frobenius norm is
asymptotically close to a sequence of homomorphisms, that is, Γ is Frobenius-
stable.

The appearance of vanishing second cohomology groups may look surprising
at first sight, but, in fact, one can translate the question of approximating an
asymptotic homomorphism by a true homomorphism to a question about splitting
an exact sequence. When the norm is submultiplicative (as is the case of the
Frobenius norm but not of the normalized Hilbert–Schmidt norm), the kernel
of this splitting problem is abelian (see Section 3.4). It is well known that
vanishing of the second cohomology with abelian coefficients means splitting
of suitable exact sequences and hence is relevant to the question of stability. It
is also interesting to observe that the second cohomology has already appeared
in the work of Kazhdan [29] in the context of uniform ε-representations (of
compact or amenable groups), a concept related to asymptotic representations,
albeit essentially different.

Recall that the classical Kazhdan’s property (T) is equivalent to the statement
that H 1(Γ,Hπ ) = 0 for all unitary representations π : Γ → U(Hπ ). We say
that a group is n-Kazhdan if H n(Γ,Hπ ) = {0} for every unitary representation
π : Γ → U(Hπ ). Theorem 1.2 simply says that every 2-Kazhdan group is
Frobenius-stable. Thus, to prove Theorem 1.1, it suffices to find 2-Kazhdan
groups which are not residually finite. Now, the seminal work of Garland [24] (as
was extended by Ballmann–Światkowski [6] and others—see [31] and Section 4
for details) shows that for every 2 6 r ∈ N and p large enough, cocompact
(arithmetic) lattices in simple p-adic Lie groups of rank r are n-Kazhdan for
every 1 6 n < r . In fact, a variant of this has been used to give examples of
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groups with property (T), that is, 1-Kazhdan groups, which are not linear (and
potentially also not residually finite) by using ‘exotic’ affine buildings of rank
2 (see [35]). We want to prove the existence of nonresidually finite 2-Kazhdan
groups, but there is a catch: as n = 2, r should be at least 3, but a well-known
result of Tits asserts that for r > 3, there are no ‘exotic’ buildings of dimension r
and the standard ones coming from p-adic Lie groups provide lattices which are
all residually finite. To work around this point, we imitate a result (and method of
proof) of Deligne [18]. Deligne showed that some nonuniform lattices in simple
Lie groups (for example, Sp(2n,Z)) have finite central extensions which are not
residually finite. Raghunathan [43] extended it also to some cocompact lattices
in Spin(2, n). These examples became famous when Toledo [50] used them to
provide examples of fundamental groups of algebraic varieties which are not
residually finite. In the last section, we will explain how Deligne’s method can
be applied also to cocompact lattices in certain p-adic Lie groups. Along the way,
we use the solution to the congruence subgroup problem for these lattices which
was provided by Rapinchuk [45] and Tomanov [51]. This way, we will get finite
central extensions of certain cocompact p-adic lattices which are themselves not
residually finite anymore. Finally, an easy spectral sequence argument shows that
a finite (central) extension of an n-Kazhdan group is also n-Kazhdan. Thus, the
nonresidually finite central extensions of the above-mentioned lattices provide the
non-Frobenius-approximated group promised in Theorem 1.1.

Along the way in Section 2, we also provide examples of residually finite
groups which are not Frobenius-stable and of finitely generated nonresidually
finite groups which are Frobenius-approximated. It is currently unclear if maybe
all amenable (or even all solvable) groups are Frobenius-approximated. Moreover,
it is an open problem to decide if the class of Frobenius-approximated groups is
closed under central quotients or under semi-direct products with Z, compare with
[36, 49].

Added in proof: By extending Theorem 1.2 to more general Banach spaces, the
main result of this paper, was extended in [32] from the Frobenius case (that is,
p = 2) to all p-Schatten norms (for 1 < p <∞).

1.1. Notation. Given any set S, we let FS denote the free group on S. For
any R ⊆ FS , we let 〈R〉 denote the normal subgroup generated by R and we let
〈S | R〉 := FS/〈R〉 be the group with generators S and relations R. We use the
convention N = {1, 2, . . .}. For n ∈ N, we let Mn(C) denote the complex n × n-
matrices and U(n) ⊆ Mn(C) the group of unitary matrices. The identity matrix is
denoted by 1n .

Recall that an ultrafilter U on N is a nontrivial collection of subsets of N such
that (i) A ∈ U , A ⊂ B implies B ∈ U , (ii) A, B ∈ U implies A ∩ B ∈ U , and (iii)
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A 6∈ U if and only if N\ A ∈ U holds. We say that U is nonprincipal if {n} 6∈ U for
all n ∈ N. The existence of nonprincipal ultrafilters on N is ensured by the Axiom
of Choice. We can view a nonprincipal ultrafilter as a finitely additive probability
measure defined on all subsets of N, taking only the values {0, 1} and giving the
value 0 to all finite subsets of N.

Throughout the whole paper, we fix a nonprincipal ultrafilter U on N. Given
some statement P(n) for n ∈ N, we use the wording P(n) holds for most n ∈ N
as {n ∈ N | P(n)} ∈ U . Given a bounded sequence (xn)n∈N of real numbers,
we denote the limit along the ultrafilter by limn→U xn ∈ (−∞,∞). Formally, the
limit is the unique real number x such that for all ε > 0, we have {n ∈ N |
|xn− x | < ε} ∈ U . For unbounded sequences, the limit takes a well-defined value
in the extended real line [−∞,∞].

We adopt the Landau notation; given two sequences (xn)n∈N and (yn)n∈N of
non-negative real numbers, we write xn = OU (yn) if there exists C > 0 such that
xn 6 Cyn for most n ∈ N and xn = oU (yn) if there exists a third sequence (εn)n∈N
of non-negative real numbers such that limn→U εn = 0 and xn = εn yn .

1.2. Unitarily invariant norms. Recall that a norm ‖·‖ on Md(C) is called
unitarily invariant if

‖U AV ‖ = ‖A‖,

for all A ∈ Md(C) and U, V ∈ U(d).
Some important examples of unitarily invariant norms are the operator

norm ‖T ‖op = sup
‖v‖=1 ‖T v‖, the Frobenius norm ‖T ‖Frob = Tr(T ∗T )1/2 =√∑n

i, j |Ti j |
2 (also known as the unnormalized Hilbert–Schmidt norm), and the

normalized Hilbert–Schmidt norm (or 2-norm) given by ‖T ‖HS =
1
√

n‖T ‖Frob for
T ∈ Mn(C). Here, T ∗ denotes the adjoint matrix and T is called self-adjoint if
T = T ∗. The matrix T is called unitary if T T ∗ = T ∗T = 1n . We recall some basic
and well-known facts about unitarily invariant norms (see, for example, [2] for
a thorough introduction to the subject). For T ∈ Mn(C), we set |T | = (T ∗T )1/2.
For self-adjoint matrices A, B, we write A 6 B if B − A is positive semidefinite,
that is, if B − A has only non-negative eigenvalues.

PROPOSITION 1.3. Let A, B,C ∈Md(C). Then, for any unitarily invariant norm,
it holds that

(1) ‖ABC‖ 6 ‖A‖op‖B‖‖C‖op,

(2) ‖A‖ = ‖A∗‖ = ‖|A|‖,

(3) if A and B are positive semidefinite matrices and A 6 B, then ‖A‖ 6 ‖B‖.
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PROPOSITION 1.4. Let A ∈ U(d). Then there is a unitary B ∈ U(d) such that
B2
= 1 and

‖B − A‖6 ‖1d − A2
‖,

for all unitarily invariant norms.

Proof. By unitary invariance, we may assume that A is a diagonal matrix, which
we denote A = diag(a1, . . . , ad). Let

b j :=

{
1 if Re(a j) > 0,
−1 if Re(a j) < 0.

One readily sees that |b j−a j | 6 |1−a j ||−1−a j | = |1−a2
j |. Thus, B = diag(b1,

. . . , bd) is a self-adjoint unitary, and by Proposition 1.3 (3),

‖B − A‖ = ‖|B − A|‖ 6 ‖|1d − A2
|‖ = ‖1d − A2

‖.

A second property that is important to us is submultiplicativity, that is, ‖AB‖ 6
‖A‖‖B‖ for all A, B ∈ Md(C). This property turns (Md(C), ‖·‖) into a Banach
algebra. The operator norm and the Frobenius norm enjoy this property, but the
normalized Hilbert–Schmidt norm does not.

1.3. Ultraproducts. We will need the definition of the ultraproduct of Banach
spaces and metric groups, respectively. First, let (Vn)n∈N be a sequence of Banach
spaces. Consider the `∞-direct product

∏
n∈N Vn (that is, the Banach space of

bounded sequences (vn)n∈N with vn ∈ Vn) and the closed subspace of null
sequences

I :=

{
(vn)n∈N ∈

∏
n∈N

Vn

∣∣∣∣ lim
n→U
‖vn‖Vn = 0

}
.

We define the ultraproduct Banach space by∏
n→U

(Vn, ‖·‖Vn ) :=
∏
n∈N

Vn

/
I.

As the name suggests, the ultraproduct Banach space is itself a Banach space
with the norm induced by ‖(xn)n∈N‖ = limn→U ‖xn‖Vn for (xn)n∈N ∈

∏
n∈N Vn .

Moreover, if the Vn are all Banach algebras, C∗-algebras or Hilbert spaces, so is
the ultraproduct.

Let (Gn)n∈N be a family of groups, all equipped with bi-invariant metrics dn . In
this case, the subgroup

N =

{
(gn)n∈N ∈

∏
n∈N

Gn

∣∣∣∣ lim
n→U

dn(gn, 1Gn ) = 0

}
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of the direct product
∏

n∈N Gn is normal, so we can define the metric ultraproduct∏
n→U

(Gn, dn) :=
∏
n∈N

Gn

/
N .

Note that, in contrast to the Banach space definition, we do not require the
sequences to be bounded. It is worth noting (albeit not relevant for our purposes)
that the bi-invariant metric

d((gn)n∈N, (hn)n∈N) = lim
n→U

min{dn(gn, hn), 1}, gn, hn ∈ Gn

on
∏

n∈N Gn induces a bi-invariant metric on
∏

n→U (Gn, dn).
The above definitions will be relevant to us in the following setting. Let (kn)n∈N

be a sequence of natural numbers and consider the family of matrix algebras Vn :=

Mkn (C) equipped with some unitarily invariant, submultiplicative norms ‖·‖n . We
usually omit the index and denote all the norms by ‖·‖. Let Gn := U(kn), equipped
with the metrics dist‖·‖n (g, h) = ‖g−h‖n, g, h ∈ Gn induced from the norms. We
consider the ultraproduct Banach space

M‖·‖U :=
∏

n→U

(Mkn (C), ‖·‖n)

and the metric ultraproduct

U‖·‖U :=
∏

n→U

(U(kn), dist‖·‖n ).

By submultiplicativity of the norms, we see that if un ∈ U(kn) satisfying
limn→U dist‖·‖n (un, 1kn ) = 0, then

lim
n→U
‖unTn − Tn‖n 6 lim

n→U
‖un − 1kn‖n · ‖Tn‖n = 0,

for all bounded sequences Tn ∈ Mkn (C). Thus, left multiplication by un induces
a continuous left action of U‖·‖U on M‖·‖U . By unitary invariance of the norms,
we see that this action is isometric. Similarly, we have a right action by right
multiplication and another left action by conjugation—both of them isometric.

1.4. Asymptotic homomorphisms. In this section, we let Γ = 〈S | R〉 be a
fixed finitely presented group (that is, S and R are finite) and we let C be a class
of groups, all equipped with bi-invariant metrics. Any map ϕ : S → G, for some
G ∈ C, uniquely determines a homomorphism FS→ G which we will also denote
by ϕ.
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DEFINITION 1.5. Let G ∈ C and let ϕ,ψ : S → G be maps. The defect of ϕ is
defined by

def(ϕ) := max
r∈R

dG(ϕ(r), 1G).

The distance between ϕ and ψ is defined by

dist(ϕ, ψ) = max
s∈S

dG(ϕ(s), ψ(s)).

The homomorphism distance of ϕ is defined by

HomDist(ϕ) := inf
π∈Hom(Γ,G)

dist(ϕ, π |S).

DEFINITION 1.6. A sequence of maps ϕn : S → Gn , for Gn ∈ C, is called an
asymptotic homomorphism if limn→U def(ϕn) = 0.

We will mainly be concerned with finite-dimensional asymptotic
representations, that is, asymptotic homomorphisms with respect to the class
of unitary groups U(n) on finite-dimensional Hilbert spaces, equipped with the
metrics

d(T, S) = ‖T − S‖, T, S ∈ U(n),

coming from some family of unitarily invariant norms ‖·‖. The class of finite-
dimensional unitary groups with metrics coming from‖·‖op, ‖·‖Frob and ‖·‖HS are
denoted as Uop, UFrob, and UHS.

We might also find the need to quantify the above definition.

DEFINITION 1.7. Let ε > 0 and G ∈ C. An ε-almost homomorphism is a map
ϕ : S→ G such that def(ϕ) 6 ε.

In the literature, there are many different (inequivalent) notions of ‘almost’,
‘asymptotic’, and ‘quasi-’ homomorphisms. If one would be precise, the above
notion of asymptotic homomorphism could be called a local, discrete asymptotic
homomorphism. Local, since we are only interested in the behavior of ϕn on the
set of relations R (compare with the uniform situation [14]), and discrete, because
the family of homomorphisms is indexed by the natural numbers.

DEFINITION 1.8. Let Gn ∈ C, n ∈ N. Two sequences ϕn, ψn : S→ Gn are called
(asymptotically) equivalent if limn→U dist(ϕn, ψn) = 0.

If an asymptotic homomorphism (ϕn)n∈N is equivalent to a sequence of genuine
representations, we call (ϕn)n∈N trivial.
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We will now come to two central notions that we study in this paper, the notions
of stability and approximability by a class of metric groups.

DEFINITION 1.9. The group Γ is called C-stable if all asymptotic
homomorphisms are equivalent to a sequence of homomorphisms, that is,

lim
n→U

HomDist(ϕn) = 0,

for all ϕn : S→ Gn , Gn ∈ C, n ∈ N with limn→U def(ϕn) = 0.

DEFINITION 1.10. A finitely presented group Γ = 〈S | R〉 is called C-
approximated, if there exists an asymptotic homomorphism ϕn : S → Gn ,
Gn ∈ C, n ∈ N such that

lim
n→U

dn(ϕn(x), 1Gn ) > 0, for all x ∈ FS\〈R〉.

We will be mainly concerned with UFrob-approximation and UFrob-stability
in this paper and, for convenience, we will often just speak about Frobenius
approximation and Frobenius stability in this context.

DEFINITION 1.11. A group Γ is called residually C if, for all x ∈ Γ \{1Γ }, there
is a homomorphism π : Γ → G for some G ∈ C such that π(x) 6= 1G .

The following proposition (see [25] or [4]) is evident from the definitions,
nevertheless a central observation in our work.

PROPOSITION 1.12. Let Γ be a finitely presented group. If Γ is C-stable and
C-approximated group, then it must be residually C. In particular, if the class C
consists of finite-dimensional unitary groups, any finitely presented, C-stable, and
C-approximated group is residually finite.

We finish this section with a basic lemma. The important part in the statement
of the lemma is that Kr does not depend on ϕ.

LEMMA 1.13. For all r ∈ 〈R〉, there is a constant Kr such that for all groups G
with a bi-invariant metric and all maps ϕ : S→ G, it holds that

dG(ϕ(r), 1G) 6 Kr def(ϕ).

Proof. If r ∈ 〈R〉, we can determine r1, . . . , rk ∈ R ∪ R−1 and x1, . . . , xk ∈ FS

such that
r = x1r1x−1

1 x2r2x−1
2 · · · xkrk x−1

k .
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Note that by bi-invariance

dG(ϕ(r j), 1G) = dG(ϕ(r−1
j ), 1G) 6 def(ϕ)

for all j . Thus, using bi-invariance again, we get

dG(ϕ(r), 1kn ) = dG(ϕ(x1r1x−1
1 ) · · ·ϕ(xkrk x−1

k ), 1G)

6
k∑

j=1

dG(ϕ(x j)ϕ(r j)ϕ(x j)
−1, 1G)

=

k∑
j=1

dG(ϕ(r j), 1G)

6 k · def(ϕ).

So letting Kr = k, we are done.

1.5. Group cohomology. We recall one construction of group cohomology.
We primarily need the second cohomology of a group with coefficients in a unitary
representation, but for completeness, we give a more general definition. Let Γ be
any group and let V be a Γ -module, that is, an abelian group together with a (left)
action π of Γ on V . We consider the chain complex Cn(Γ, V ), n > 1, which is
the set of functions from Γ n to V together with the coboundary operator,

d = dn
: Cn(Γ, V )→ Cn+1(Γ, V ),

defined by

dn( f )(g1, . . . , gn+1) = π(g1) f (g2, . . . , gn+1)

+

n∑
j=1

(−1) j f (g1, . . . , g j g j+1, . . . , gn+1)

+(−1)n+1 f (g1, . . . , gn).

We also let C0(Γ, V ) = V and d0(v)(g) = π(g)v − v for v ∈ V, g ∈ Γ . Thus,
for n > 0, we define the n-coboundaries to be Bn(Γ, V ) = Im(dn−1) (with B0(Γ,

V ) = {0}) and the n-cocycles to be Z n(Γ, V ) = ker(dn). One checks that Bn(Γ,

V ) ⊆ Z n(Γ, V ), so we can define the nth cohomology to be

H n(Γ, V ) = Z n(Γ, V )/Bn(Γ, V ).

Recall that, given an extension of groups

1→ V
i
→ Γ̂

q
→ Γ → 1,
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where V is abelian, there is an action of Γ on V induced by the conjugation action
of Γ̂ on i(V ). Fixing any section σ : Γ → Γ̂ (with σ(1Γ ) = 1Γ̂ ) of the quotient
q , we can define a map f : Γ × Γ → V as the solution to

i( f (g, h)) = σ(g)σ (h)σ (gh)−1,

for g, h ∈ Γ . It is straightforward to check that f ∈ Z 2(Γ, V, π) and f ∈
B2(Γ, V, π) exactly when the extension splits, that is, there is a homomorphism
p : Γ → Γ̂ such that q ◦ p = idΓ .

Assume now that Γ is countable and V is a Banach space with norm ‖·‖, then
we can define a separating family of seminorms on Cn(Γ, V ) by

‖ f ‖F = max
g∈F
‖ f (g)‖, (1.1)

for f ∈ Cn(Γ, V ) and finite F ⊆ Γ n . It is easy to see that with respect to
this family, Cn(Γ, V ) is a Fréchet space (one can even take ‖ · ‖{x}, x ∈ Γ n as
separating family) and if Γ acts on V by isometries, the map dn is bounded.

2. Some examples of non-Frobenius-stable groups

Part of our aim is to provide a large class of Frobenius-stable groups, but
let us start out by giving examples of well-known groups that are not stable.
Specifically, we show that Z2 and the Baumslag–Solitar group BS(2, 3) are not
Frobenius-stable by giving concrete examples of asymptotic representations that
are not equivalent to genuine representations. We also exploit the latter example
to provide an example of an Frobenius-approximated, nonresidually finite group;
see Section 2.3.

2.1. Z2 is not Frobenius-stable. In [54], Voiculescu proved that the matrices

An =


1
ωn

ω2
n
. . .

ωn−1
n

 , Bn =


0 0 1
1 0 0

1
. . .

1 0

 ∈ U(n),

where ωn := exp( 2π i
n ), n ∈ N, define a nontrivial ‖·‖op-asymptotic representation

of Z2
= 〈a, b, | aba−1b−1

〉 by ϕn(a) = An and ϕn(b) = Bn . More precisely,

def‖·‖op(ϕn) = ‖An Bn A∗n B∗n − 1n‖op = |ωn − 1| = OU

(
1
n

)
,
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but
HomDist‖·‖op(ϕn) >

√
2− |1− ωn| − 1

(see also [22, 54]). By the inequalities ‖T ‖op 6 ‖T ‖Frob 6 n1/2
‖T ‖op for T ∈ U(n),

we conclude that
def‖·‖Frob(ϕn) = OU (n−1/2)

and
HomDist‖·‖Frob(ϕn) >

√
2− |1− ωn| − 1,

so ϕn is also a nontrivial ‖·‖Frob-asymptotic representation. In particular, Z2 is
neither Uop- nor Frobenius-stable. It is worth noting that Z2 actually is UHS-stable,
which, for example, follows from unpublished observations from the second
author: Almost commuting matrices with respect to normalized Hilbert–Schmidt
norm.

2.2. BS(2, 3) is not Frobenius-stable. We now turn our attention to the
Baumslag-Solitar group BS(2, 3) = 〈a, b | b−1a2ba−3

〉; see [7] for the original
reference. By definition, the generators satisfy the equation

b−1a2b = a3. (2.1)

It is also well known and not hard to check that the generators do not satisfy

ab−1ab = b−1aba. (2.2)

Indeed, this follows easily from the description of BS(2, 3) as an HNN-extension
of Z. On the other hand, we recall the following.

PROPOSITION 2.1 (Baumslag–Solitar [7]). Let Γ be a residually finite group. If
a, b ∈ Γ satisfy (2.1), then they also satisfy (2.2).

Proof. Indeed, if a has finite order and a2 is conjugate to a3, then the order of a
cannot be even. Thus, b−1ab is a power of b−1a2b = a3. We conclude that a and
b−1ab commute.

By Mal’cev’s theorem, we immediately obtain the following consequence.

COROLLARY 2.2. Let a, b be unitary matrices. If a, b ∈ Γ satisfy (2.1), then they
also satisfy (2.2).

This last corollary can also be proven directly by linear algebra methods;
see [23] where some quantitative aspects of operator-norm approximability of
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BS(2, 3) were studied. By Corollary 2.2, in order to show that BS(2, 3) is
nonstable, it suffices to find a sequence of pairs of unitary matrices that ‖·‖Frob-
asymptotically satisfy Equation (2.1) but are far from satisfying Equation (2.2).
The study of approximation properties of BS(2, 3) goes back to Rădulescu [42],
where the focus was more on approximation in the (normalized) Hilbert–Schmidt
norm. We are now going to prove the following result.

THEOREM 2.3. The group BS(2, 3) is not Frobenius-stable.

The theorem is a direct consequence of the following lemma.

LEMMA 2.4. There exist An, Bn ∈ U(6n) such that

• ‖B−1
n A2

n Bn − A3
n‖Frob = OU (

1
n )

• ‖An B−1
n An Bn − B−1

n An Bn An‖Frob =
√

6n − OU (1).

Proof. We will omit the index and write A = An and B = Bn . Let ω = exp( 2π
6n )

and consider a 6n-dimensional Hilbert space H with orthonormal basis v[0], v[1],
. . . , v[6n − 1]. Define A ∈ U(6n) as Av[ j] = ω jv[ j] (that is, A is A6n from
the previous example). We plan to decompose H as a direct sum in two ways
H =

⊕n−1
j=0 S[ j] and H =

⊕n−1
j=0 C[ j] such that each S[ j] and each C[ j] is six-

dimensional and the restriction of A2 to S[ j] as well as restriction of A3 to C[ j]
act approximately as multiplication by ω6 j . (The letter S stands for square and C
stands for cube.) Then we construct B =

⊕n−1
j=0 B j with B j : C[ j] → S[ j]. Let

us start the detailed construction. Define

S[ j] = span{v[3 j], v[3 j + 1], v[3 j + 2],
v[3 j + 3n], v[3 j + 3n + 1], v[3 j + 3n + 2]}

and

C[ j] = span{v[2 j], v[2 j + 2n], v[2 j + 4n],
v[2 j + 1], v[2 j + 2n + 1], v[2 j + 4n + 1]}.

We will use the ordered base of S[ j] (respectively C[ j]) as it appears in their
definitions. Let S j (respectively C j ) be a restriction of A to S[ j] (respectively
C[ j]). Observe that

S j = ω
3 j diag(1, ω, ω2,−1,−ω,−ω2)

and

C j = ω
2 j diag

(
1, exp

(
2π i

3

)
, exp

(
4π i

3

)
, ω, ω exp

(
2π i

3

)
, ω exp

(
4π i

3

))
.
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Now, let B ∈ U(6n) be any unitary of the form B =
⊕n−1

j=0 B j with unitary
B j : C[ j] → S[ j]. We claim that

‖B−1 A2 B − A3
‖Frob = OU

(
1
n

)
.

Indeed,

‖B−1 A2 B − A3
‖

2
Frob =

n−1∑
j=0

‖B−1
j S2

j B j − C3
j‖

2
Frob,

and we obtain

‖B−1
j S2

j B j − C3
j‖

2
Frob = ‖B

−1
j (S

2
j − ω

6 j)B j − (C3
j − ω

6 j)‖2
Frob

6 ‖S2
j − ω

6 j
‖

2
Frob + ‖C

3
j − ω

6 j
‖

2
Frob

= 2(|1− ω2
|
2
+ |1− ω4

|
2)+ 3|1− ω3

|
2
= OU

(
1
n2

)
,

which entails the claim. Now, consider the unitary given by the matrix

B j =
1
√

2


1 1 0 0 0 0
1 −1 0 0 0 0
0 0 1 1 0 0
0 0 1 −1 0 0
0 0 0 0 1 1
0 0 0 0 1 −1

 ,

and let
S̃ = diag(1, 1, 1,−1,−1,−1)

and

C̃ = diag
(

1, exp
(

2π i
3

)
, exp

(
4π i

3

)
, 1, exp

(
2π i

3

)
, exp

(
4π i

3

))
.

It is not hard to check that

‖S j − ω
3 j S̃‖2

Frob = OU

(
1
n2

)
and

‖C j − ω
2 j C̃‖2

Frob = OU

(
1
n2

)
.
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Direct calculations show that ‖C̃ B−1
j S̃B j − B−1

j S̃B j C̃‖2
Frob = 6; so since

‖AB−1 AB − B−1 AB A‖2
Frob =

n−1∑
j=0

‖C j B−1
j S j B j − B−1

j S j B j C j‖
2
Frob,

the lemma follows.

2.3. An example of a finitely generated, nonresidually finite, Frobenius-
approximated group. Note that the example above provides a homomorphism
into the ultraproduct ϕ : BS(2, 3) → U‖·‖Frob

U . The image Γ = ϕ(BS(2, 3)) is
clearly Frobenius-approximated, but it is clearly not residually finite since, by
construction, the elements ϕ(a), ϕ(b) ∈ Γ satisfy (2.1) but not (2.2). In some
sense, it is an artifact of the definitions that every non-Frobenius-stable group
has a nontrivial Frobenius-approximated group quotient. It seems quite likely
that the construction above is enough to show that BS(2, 3) is itself Frobenius-
approximated. Indeed, even though the proof of this assertion is not spelled out in
full detail in [42], it appears that Rădulescu’s construction shows this. Note that it
follows from the work of Kropholler [30] that BS(2, 3) is residually solvable and
hence MF; see [15].

3. Diminishing the defect of asymptotic representations

This section contains the key technical novelty of this article. We associate
an element [α] ∈ H 2(Γ,

∏
n→U (Mkn (C), ‖·‖)) to an asymptotic representation

ϕn : Γ → U(kn). We prove that if [α] = 0, then the defect can be diminished in
the sense that there is an equivalent asymptotic representation ϕ′n with effectively
better defect, more precisely def(ϕ′n) = oU (def(ϕn)).

3.1. Assumptions for this section. For this section, we fix the following:

• A finitely presented group Γ = 〈S | R〉,

• a sequence of natural numbers (kn)n∈N,

• a family of submultiplicative, unitarily invariant norms on U(k), k ∈ N, all
denoted by ‖·‖, and

• an asymptotic representation ϕn : S → U(kn) with respect to the metrics
associated with ‖·‖.
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Recall the ultraproduct notation introduced in Section 1.3, that is, U‖·‖U =∏
n→U (U(kn), dist‖·‖) and M‖·‖U =

∏
n→U (Mkn (C), ‖·‖) and recall that since

‖·‖ is submultiplicative, U‖·‖U acts on M‖·‖U by multiplication. An asymptotic
representation as above induces a homomorphism ϕU : Γ → U‖·‖U on the level
of the group Γ . Thus, Γ acts on M‖·‖U through ϕU . With this in mind, we also want
to fix the following:

• a section σ : Γ → FS of the natural surjection FS → Γ , in particular, we have
σ(g)σ (h)σ (gh)−1

∈ 〈R〉 for all g, h ∈ Γ ,

• a sequence ϕ̃n : Γ → U(kn) such that ϕ̃(1Γ ) = 1kn , ϕ̃n(g−1) = ϕ̃n(g)∗, and for
every g ∈ Γ ,

‖ϕn(σ (g))− ϕ̃n(g)‖ = OU (def(ϕn)). (3.1)

In particular, the sequence (ϕ̃n(g))n∈N maps to the element ϕU (g) in the
ultralimit, for all g ∈ Γ . (We say that ϕ̃n is a lift of ϕU .)

For this, note that given any section σ : Γ → FS , the sequence ϕn ◦ σ is a lift of
ϕU . There exists a section σ with σ(1Γ ) = 1FS and σ(g−1) = σ(g)−1 for all g
such that g2

6= 1Γ . We define ϕ̃n(g) := ϕn(σ (g)) for all g with g2
6= 1Γ . In the

case g2
= 1Γ , by Lemma 1.13, it holds that

‖ϕn(σ (g))2 − 1kn‖ = OU (def(ϕn)),

so by Proposition 1.4, there are self-adjoint unitaries Bn ∈ U(kn) such that

‖Bn − ϕn(σ (g))‖ = OU (def(ϕn)).

By letting ϕ̃n(g) := Bn , we get the desired map.

3.2. The cohomology class of an asymptotic representation. We want to
define an element in H 2(Γ,M‖·‖U ) associated with ϕn . To this end, we define cn :=

cn(ϕn) : Γ × Γ → Mkn (C) by

cn(g, h) =
ϕ̃n(g)ϕ̃n(h)− ϕ̃n(gh)

def(ϕn)
,

for all n ∈ N such that def(ϕn) > 0 and cn(g, h) = 0 otherwise, for all g, h ∈ Γ .
The next proposition is a collection of basic properties of the maps cn .

PROPOSITION 3.1. Let g, h, k ∈ Γ . The maps cn satisfy the following equations:

ϕ̃n(g)cn(h, k)− cn(gh, k)+ cn(g, hk)− cn(g, h)ϕ̃n(k) = 0,
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cn(g, g−1) = cn(1Γ , g) = cn(g, 1Γ ) = 0 and cn(g, h)∗ = cn(h−1, g−1).

Furthermore, we have for every g, h ∈ Γ ,

‖cn(g, h)‖ = OU (1). (3.2)

Proof. For all g, h, k ∈ Γ and n ∈ N, we have

def(ϕn) · (ϕ̃n(g)cn(h, k)− cn(gh, k)+ cn(g, hk)− cn(g, h)ϕ̃n(k))
= ϕ̃n(g)(ϕ̃n(h)ϕ̃n(k)− ϕ̃n(hk))− (ϕ̃n(gh)ϕ̃n(k)− ϕ̃n(ghk))
+ (ϕ̃n(g)ϕ̃n(hk)− ϕ̃n(ghk))− (ϕ̃n(g)ϕ̃n(h)− ϕ̃n(gh))ϕ̃n(k)
= ϕ̃n(g)ϕ̃n(h)ϕ̃n(k)− ϕ̃n(g)ϕ̃n(hk)− ϕ̃n(gh)ϕ̃n(k)+ ϕ̃n(ghk)
+ ϕ̃n(g)ϕ̃n(hk)− ϕ̃n(ghk)− ϕ̃n(g)ϕ̃n(h)ϕ̃n(k)+ ϕ̃n(gh)ϕ̃n(k)
= 0,

which proves the first equation. The second line of equations is immediate from
the definition of cn and the fact that ϕ̃n(g−1) = ϕ̃n(g)∗.

For the last assertion, note that since σ(g)σ (h)σ (gh)−1
∈ 〈R〉, it follows from

Lemma 1.13 that

‖ϕn(σ (g)σ (h)σ (gh)−1)− 1kn‖ = OU (def(ϕn)).

Thus, it follows (by using Equation (3.1)) that

def(ϕn)‖cn(g, h)‖ = OU (def(ϕn)).

Note for later use that for fixed g, h ∈ Γ , the bound in (3.2), which comes from
Lemma 1.13, holds for all asymptotic representations ϕn simultaneously (as long
as we use the same presentation of Γ and section σ to construct cn). In addition,
Equation (3.2) entails that the sequence cn induces a map

c = (cn)n∈N : Γ × Γ → M‖·‖U .

This map is not a cocycle in the sense explained in Section 1.5, but, as the next
corollary states, the map α(g, h) := c(g, h)ϕU (gh)∗ is. (The map c is a cocycle
in the equivalent picture of Hochschild cohomology and it turns out that some
calculations are more natural with c, so we will also work with this map.) Even
though we suppress it in the notation, keep in mind that c and α depend on the lift
ϕ̃n and on def(ϕn).

COROLLARY 3.2. The map α : Γ × Γ → M‖·‖U is a 2-cocycle with respect to the
isometric action π(g)T = ϕU (g)TϕU (g)∗, g ∈ Γ, T ∈ M‖·‖U .
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Proof. Given g, h, k ∈ Γ , we have that

ϕU (g)α(h, k)ϕU (g)∗ − α(gh, k)+ α(g, hk)− α(g, h)
= ϕU (g)c(h, k)ϕU (hk)∗ϕU (g)∗ − c(gh, k)ϕU (ghk)∗

+ c(g, hk)ϕU (ghk)∗ − c(g, h)ϕU (gh)∗

= (ϕU (g)c(h, k)− c(gh, k)+ c(g, hk)− c(g, h)ϕU (k))ϕU (ghk)∗

= 0,

where we used that ϕU is a homomorphism and Proposition 3.1.

We call α the cocycle associated with the sequence (ϕn)n∈N.

PROPOSITION 3.3. Assume that α represents the trivial cohomology class in
H 2(Γ,M‖·‖U ), that is, there exists a map β : Γ → M‖·‖U satisfying

α(g, h) = ϕU (g)β(h)ϕU (g)∗ − β(gh)+ β(g), g, h ∈ Γ.

Then

β(1Γ ) = 0, (3.3)

β(g) = −ϕU (g)β(g−1)ϕU (g)∗ (3.4)
c(g, h) = ϕU (g)β(h)ϕU (h)− β(gh)ϕU (gh)+ β(g)ϕU (gh). (3.5)

Furthermore, we can choose β(g) to be skew-symmetric for all g ∈ Γ .

Proof. Equation (3.5) is equivalent to the equation from the assumption since
α(g, h) = c(g, h)ϕU (gh)∗ for g, h ∈ Γ . Equation (3.3) follows from (3.5) and
Proposition 3.1 with g = h = 1Γ and (3.4) follows from (3.3), (3.5), and
Proposition 3.1 with h = g−1. For the last claim, we possibly need to alter β
a little. Note that β ′(g) := −β(g)∗ = ϕU (g)β(g−1)∗ϕU (g)∗ also satisfies (3.3)–
(3.5). Indeed,

c(g, h) = c(h−1, g−1)∗

= (ϕU (h−1)β(g−1)ϕU (g−1)− β(h−1g−1)ϕU (h−1g−1)

+β(h−1)ϕU (h−1g−1))∗

= ϕU (g)β(g−1)∗ϕU (h)− ϕU (gh)β((gh)−1)∗ + ϕU (gh)β(h−1)∗

= β ′(g)ϕU (gh)− β ′(gh)ϕU (gh)+ ϕU (g)β ′(h)ϕU (h)

for g, h ∈ Γ , which proves (3.5) whence the other two follow. Thus, replacing β
with

β](g) :=
β(g)− β(g)∗

2
, g ∈ Γ, n ∈ N,
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we see that β](g) is skew-symmetric and that Equations (3.3)–(3.5) are still
satisfied.

3.3. Correction of the asymptotic representation. Now let β be as
above and let βn : Γ → Mkn (C) be any skew-symmetric lift of β. Then
exp(− def(ϕn)βn(g)) is a unitary for every g ∈ Γ , so we can define a sequence of
maps ψn : Γ → U(kn) by

ψn(g) = exp(−def(ϕn)βn(g))ϕ̃n(g).

Note that since ϕ̃n(1Γ ) = 1kn and βn(1Γ ) = 0, we have ψn(1Γ ) = 1kn .
In the proofs of Proposition 3.4 and Lemma 3.5, we will make use of two basic

inequalities that hold for any k ∈ N and A ∈ Mk(C):

‖1k − exp(A)‖ 6 ‖A‖ exp(‖A‖) (3.6)
‖1k + A − exp(A)‖ 6 ‖A‖2 exp(‖A‖). (3.7)

They are simple consequences of the definition exp(A) =
∑
∞

k=0
Ak

k! and the
triangle inequality and submultiplicativity of the norm.

PROPOSITION 3.4. With the notation from above, for every g ∈ Γ , we have

‖ϕ̃n(g)− ψn(g)‖ = OU (def(ϕn)).

More precisely,
‖ϕ̃n(g)− ψn(g)‖ 6 2‖βn(g)‖ def(ϕn)

for most n ∈ N.

Proof. Let g ∈ Γ . By unitary invariance and submultiplicativity, we get that

‖ϕ̃n(g)− ψn(g)‖ = ‖1kn − exp(−def(ϕn)βn(g))‖
(3.6)
6 def(ϕn)‖βn(g)‖ exp(def(ϕn)‖βn(g)‖)

and since ‖βn(g)‖ is a bounded sequence and limn→U def(ϕn) = 0, we have
exp(def(ϕn)‖βn(g)‖) 6 2 for most n and the result follows.

It follows that ψn|S is an asymptotic representation satisfying def(ψn|S) =

OU (def(ϕn)), but we prove that the defect is actually oU (def(ϕn)).

LEMMA 3.5. For any g, h ∈ Γ , we have that

‖ψn(gh)− ψn(g)ψn(h)‖ = oU (def(ϕn)).
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Proof. Let ξn(x) := (1kn − def(ϕn)βn(x))ϕ̃n(x), for x ∈ Γ , and let g, h ∈ Γ be
fixed. Let C = 2 maxx∈{g,h,gh} ‖β(x)‖. Whence it follows that for most n ∈ N,

‖ψn(x)− ξn(x)‖
(3.7)
6 C · def(ϕn)

2,

for x ∈ {g, h, gh}. By the above (and by submultiplicativity), it follows that

‖ψn(gh)− ψn(g)ψn(h)‖ = ‖ξn(gh)− ξn(g)ξn(h)‖ + oU (def(ϕn)),

so it suffices to show that

‖ξn(gh)− ξn(g)ξn(h)‖ = oU (def(ϕn))

which amounts to the following calculations:

ξn(gh)− ξn(g)ξn(h)
= ϕ̃n(gh)− ϕ̃n(g)ϕ̃n(h)
+ def(ϕn)(−βn(gh)ϕ̃n(gh)+ ϕ̃n(g)βn(h)ϕ̃n(h)+ βn(g)ϕ̃n(g)ϕ̃n(h))

− def(ϕn)
2βn(g)ϕ̃n(g)βn(h)ϕ̃(h)

= def(ϕn)(−cn(g, h)
+ ϕ̃n(g)βn(h)ϕ̃n(h)− βn(gh)ϕ̃n(gh)+ βn(g)ϕ̃n(g)ϕ̃n(h))

− def(ϕn)
2βn(g)ϕ̃n(g)βn(h)ϕ̃n(h).

By Equation (3.5), the expression

−cn(g, h)+ ϕ̃n(g)βn(h)ϕ̃n(h)− βn(gh)ϕ̃n(gh)+ βn(g)ϕ̃n(g)ϕ̃n(h)

tends to zero. Furthermore, using submultiplicativity of the norm, we conclude
‖βn(g)ϕ̃n(g)βn(h)ϕ̃n(h)‖ is bounded, and we reach the desired conclusion.

At last, we define the asymptotic representation ϕ′n : S → U(kn) by ϕ′n = ψn|S

and reach the desired conclusion def(ϕ′n) = oU (def(ϕn)). Let us, for reference’s
sake, formulate the result properly.

THEOREM 3.6. Let Γ = 〈S | R〉 be a finitely presented group and let
ϕn : S → U(kn) be an asymptotic representation with respect to a family of
submultiplicative, unitarily invariant norms. Assume that the associated 2-
cocycle α = α(ϕn) is trivial in H 2(Γ,M‖·‖U ). Then there exists an asymptotic
representation ϕ′n : S→ U(kn) such that

(i) dist(ϕn, ϕ
′

n) = OU (def(ϕn)) and
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(ii) def(ϕ′n) = oU (def(ϕn)).

Proof. We adopt the above notation. Assertion (i) follows from Proposition 3.4;
let r = x1x2 · · · xm ∈ R be written as a reduced word, where x j ∈ S ∪ S−1, j = 1,
. . . ,m. By iteration of Lemma 3.5 (using that ψn takes unitary values and that ‖·‖
is unitarily invariant), we see that

‖ϕ′n(r)− 1kn‖ = ‖ψn(x1)ψn(x2) · · ·ψn(xm)− 1kn‖

= ‖ψn(x1x2)ψn(x3) · · ·ψn(xm)− 1kn‖ + oU (def(ϕn))

...

= ‖ψ(1Γ )− 1kn‖ + oU (def(ϕn)).

Since ψ(1Γ ) = 1kn , we are done.

The converse of Theorem 3.6 is also valid in the following sense.

PROPOSITION 3.7. Let Γ = 〈S | R〉 be a finitely presented group and let ϕn,

ψn : S → U(kn) be asymptotic representations with respect to some family of
submultiplicative, unitarily invariant norms and suppose

• dist(ϕn, ψn) = OU (def(ϕn)) and

• def(ψn) = oU (def(ϕn)).

Then, the 2-cocycle α associated with (ϕn)n∈N is trivial in H 2(Γ,M‖·‖U ). In
particular, if ϕn is sufficiently close to a homomorphism, α is trivial.

Proof. If def(ϕn) = 0 for most n ∈ N, there is nothing to prove, so let us assume
this is not the case. Let ϕ̃n, ψ̃n : Γ → U(kn) be the induced maps we get by fixing
a section Γ → FS as explained in the beginning of this section. We note that the
sequences ϕ̃n and ψ̃n induce the same map ϕU in the limit. Define

γn(g) =
ϕ̃n(g)− ψ̃n(g)

def(ϕn)

for n with def(ϕn) > 0 and γn(g) = 0 otherwise. By the first bullet in our
assumptions, γn is essentially bounded, so it defines an element γ (g) ∈ M‖·‖U . If
we prove that

c(g, h) = ϕU (g)γ (h)− γ (gh)+ γ (g)ϕU (h),
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it will follow easily that β(g) := γ (g)ϕU (g)∗ will satisfy dβ = α. First note that
it follows from the second bullet in our assumptions that for every g, h ∈ Γ

‖ψ̃n(gh)− ψ̃n(g)ψ̃n(h)‖ = oU (def(ϕn));

thus,

def(ϕn) · (ϕ̃n(g)γn(h)− γn(gh)+ γn(g)ψ̃n(h))

= ϕ̃n(g)ϕ̃n(h)− ϕ̃n(g)ψ̃n(h)− ϕ̃n(gh)+ ψ̃n(gh)

+ ϕ̃n(g)ψ̃n(h)− ψ̃n(g)ψ̃n(h)

= ϕ̃n(g)ϕ̃n(h)− ϕ̃n(gh)+ ψ̃n(gh)− ψ̃n(g)ψ̃n(h)
= def(ϕn) · cn(g, h)+ oU (def(ϕn)).

Now the result follows by dividing by def(ϕn) (which is possible for most n) and
taking the limit.

It is now clear that we are in need of large classes of groups for which
general vanishing results for the second cohomology with Banach or Hilbert space
coefficients can be proven. This will be the subject of the next section. But first
let us mention an alternative approach that can be used to prove Theorem 3.6.

3.4. Asymptotic representations and extensions. As mentioned in
Section 1.5, the second cohomology characterizes extensions of Γ with abelian
kernel and that in this picture, coboundaries correspond to splitting extensions.
Thus, Theorem 3.6 and Corollary 3.7 show that finding the improved ϕ′n is
equivalent to finding a splitting for a certain extension. The connection between
asymptotic representations and extensions can be seen directly without going
through the above computations, and this idea can actually be used to prove
Theorem 3.6. Since this approach is very illustrative (it shows, for instance, very
clearly what rôle submultiplicativity plays), we sketch the proof.

We retain the assumptions from Section 3.1 and introduce some more notation.
Letting εn := def(ϕn), for n ∈ N, we define

N(OU (εn)) =
{
(un)n∈N ∈

∏
n∈N

U(kn)

∣∣∣ ‖un − 1kn‖ = OU (εn)
}

and
U(OU (εn)) =

∏
n∈N

U(kn)
/

N (OU (εn)).
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Similarly, we define N(oU (εn)) and U(oU (εn)). We saw that the asymptotic
representation (ϕn)n∈N induces a homomorphism ϕU : Γ → U‖·‖U , but Lemma 1.13
actually implies the existence of an induced homomorphism

ϕ̂U : Γ → U(OU (εn)).

Now we observe that the existence of ϕ′n : S → U(kn) with dist(ϕn, ϕ
′

n) =

OU (def(ϕn)) and def(ϕ′n) = oU (def(ϕn)) as in Theorem 3.6 is equivalent to the
existence of a lift ϕ′U of ϕ̂U :

U(oU (εn))

��

Γ

ϕ′U

::

ϕ̂U

$$
U(OU (εn))

We also see that the map ϕ̂U fits into the following commutative diagram:

1 // N // U(oU (εn))
ψ // U(OU (εn)) // 1

1 // N // Γ̂ //

OO

Γ

ϕ̂U

OO

// 1

where Γ̂ is the pullback through ϕ̂ and ψ and

N := N(OU (εn))/N(oU (εn)).

Combining these two observations, it easily follows that ϕn can be improved to
ϕ′n if and only if the bottom row in the latter diagram splits. Now, since ‖·‖ is
submultiplicative, the group N is actually abelian. Indeed, for all T, S ∈ U(k), we
have that

‖T ST ∗S∗ − 1k‖ = ‖T S − ST ‖
= ‖(T − 1k)(S − 1k)− (S − 1k)(T − 1k)‖

6 2‖T − 1k‖‖S − 1k‖,

so if (Tn)n∈N, (Sn)n∈N ∈ N (O(εn)), then

(Tn SnT ∗n S∗n )n∈N ∈ N (O(ε2
n)) ⊆ N (o(εn)),
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whence the claim follows. Hence, as explained in Section 1.5, the extension 1→
N → Γ̂ → Γ → 1 corresponds to an element [α̂] ∈ H 2(Γ, N ), and we conclude
that ϕn can be improved if and only if [α̂] = [0]. Now, the coefficients N are not
exactly the same as M‖·‖U in Theorem 3.6, but with a little effort, one can prove
that N is a real Banach space (or a real Hilbert space in the case ‖·‖ = ‖·‖Frob)
with an isometric Γ -action and the existence of an equivariant homomorphism
θ : N → M‖·‖U such that [θ ◦ α̂] = [α].

REMARK 3.8. We note that this approach also works for the most part if ‖·‖ is not
submultiplicative. In this case, however, the group N is not abelian and the second
cohomology with non-abelian coefficients is much less tractable in general.

This alternative approach to the problem at hand is rather conceptual and
elegant, and the proof that we chose to present in detail also has its merits.
The cocycle α can be computed directly from (ϕn)n∈N, and in cases where the
associated 1-cochain β can be computed explicitly from α, this gives us an explicit
expression for ϕ′n .

4. Cohomology vanishing and examples of n-Kazhdan groups

Recall that if Γ is a finitely (or, more generally, compactly) generated
group, then Γ has Kazhdan’s property (T) if and only if the first cohomology
H 1(Γ,Hπ ) = 0 for every unitary representation π : Γ → U(Hπ ) on a Hilbert
space Hπ ; see [9] for a proof and more background information. We will consider
groups for which the higher cohomology groups vanish. Higher dimensional
vanishing phenomena have been studied in various articles; see, for example,
[5, 6, 12, 20, 21, 35, 37].

We propose the following terminology.

DEFINITION 4.1. Let n ∈ N. A group Γ is called n-Kazhdan if H n(Γ,Hπ )

vanishes for all unitary representations (π,Hπ ) of Γ . We call Γ strongly n-
Kazhdan, if Γ is k-Kazhdan for k = 1, . . . , n.

So 1-Kazhdan is the Kazhdan’s classical property (T). See [5, 35] for
discussions of other related higher dimensional analogues of property (T). It
will be central in our proof that by an application of the open mapping theorem,
vanishing of cohomology with Hilbert space coefficients implies that cocycles
are coboundaries with control on the norms. This is explained in the following
proposition and its corollary, where we use the terminology introduced in
Equation (1.1).
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PROPOSITION 4.2. Let n ∈ N, let Γ be a countable group, let π : Γ → U(Hπ )

be a unitary representation, and assume that H n(Γ,Hπ ) = {0}. Then for every
finite set F ⊆ Γ n−1, there exist a finite set Fπ ⊆ Γ n and a constant Cπ,F > 0 such
that for every cocycle z ∈ Z n(Γ,Hπ ), there is an element b ∈ Cn−1(Γ,Hπ ) such
that z = dn−1b and ‖b‖F < Cπ,F‖z‖Fπ .

Proof. By definition of the topology on Cn(Γ,Hπ ), the basic open sets are given
by

Uδ,F ′ = { f ∈ Cn(Γ,Hπ ) | ‖ f ‖F ′ < δ},

for a finite F ′ ⊆ Γ n and δ > 0. Since the map dn−1
: Cn−1(Γ,Hπ )→ Z n(Γ,Hπ )

is linear, bounded, and surjective, the open mapping theorem applies (see [46]);
so there are Cπ,F > 0 and Fπ ⊆ Γ n such that

UC−1
π,F ,Fπ

∩ Z n(Γ,Hπ ) ⊆ dn−1(U1,F).

In other words, if z ∈ Z n(Γ,Hπ ), ‖z‖Fπ = 1, then C−1
π,F z ∈ UC−1

π,F ,Fπ
; so there is

b ∈ Cn−1(Γ,Hπ ) such that dn−1b = z and ‖b‖F < Cπ,F = Cπ,F‖z‖. This proves
the claim.

We need the fact that if H 2(Γ,Hπ ) vanishes universally, the set Fπ and the
bound Cπ,F can be chosen universally for all unitary representations π . This is
the consequence of an easy diagonalization argument.

COROLLARY 4.3. Let n ∈ N and Γ be a countable n-Kazhdan group. Then for
every finite set F ⊆ Γ n , there are a finite set F0 ⊆ Γ

n−1 and a constant CF > 0
such that for all unitary representations π of Γ and all cocycles z ∈ Z n(Γ,Hπ ),
there is an element b ∈ Cn−1(Γ,Hπ ) such that z = dn−1b and ‖b‖F < CF‖z‖F0 .

We also observe the following extension proposition.

PROPOSITION 4.4. Consider a short exact sequence of groups

1→ Λ→ Γ̃ → Γ → 1.

If Λ is strongly n-Kazhdan and Γ is n-Kazhdan, then Γ̃ is also n-Kazhdan. In
particular, this applies if Λ or Γ is finite.

Proof. By the Hochschild–Serre spectral sequence [13], it is enough to show that
H k(Γ, H l(Λ,Hπ |Λ)) vanishes for all k, l ∈ N with k+l = n. If l > 0, then H l(Λ,

Hπ |Λ) vanishes. For l = 0 and k = n, we have H 0(Λ,Hπ |Λ) = Fix(π |Λ) (the set
of fixed vectors in Hπ |Λ), which is a Hilbert space, and the induced action of Γ is
a unitary representation; so we conclude that H n(Γ, H 0(Λ,Hπ |Λ)) vanishes.
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In view of the previous section, it is natural to ask if there exists a nonresidually
finite group such that H 2(Γ, A) vanishes for all C∗-algebras A whenever Γ acts
on A by automorphisms. We are not able to answer this question; however, one
can show that H 1(Γ, `∞(Γ )) does not vanish for any infinite group, which makes
a positive answer somewhat unlikely. Here, we view `∞(G) as a G-module with
respect to the right translation action. Indeed, let d : Γ ×Γ → N be a proper left-
invariant metric. Then, c(g) := (h 7→ d(1Γ , h)−d(1Γ , hg))h∈Γ defines a cocycle
c : Γ → `∞(Γ ) which cannot be the boundary of an element in `∞(Γ ) if Γ is
infinite.

4.1. Higher rank p-adic lattices are 2-Kazhdan. Finally, this section
provides examples, or every n > 2, of groups which are n-Kazhdan. The results
are essentially known and we recall them in detail for convenience.

Let K be a non-archimedean local field of residue class q , that is, if O ⊂ K is
the ring of integers and m ⊂ O is its unique maximal ideal, then q = |O/m|. Let
G be a simple K -algebraic group of K -rank r and assume that r > 1. The group
G := G(K ) acts on the associated Bruhat–Tits building B. For more information
on the theory of buildings, see [1]. The latter is an infinite, contractible, pure
simplicial complex of dimension r , on which G acts transitively on the chambers,
that is, the top-dimensional simplices. Let Γ be a uniform lattice in G, that is,
a discrete cocompact subgroup of G. When Γ is also torsion-free (which can
always be achieved by replacing Γ by a finite-index subgroup), the quotient
X := Γ \B is a finite r -dimensional simplicial complex and Γ = π1(X). In
particular, the group Γ is finitely presented. We will use the following theorem
which essentially appears in the work of Ballmann and Światkowski [6] building
on previous work of Garland [24].

THEOREM 4.5. For every natural number r > 2, there exists q0(r) ∈ N such that
the following holds. If q > q0(r) and G and Γ are as above, then Γ is strongly
(r − 1)-Kazhdan. In particular, if r > 3, then Γ is 2-Kazhdan.

Recall that being 1-Kazhdan is equivalent to Kazhdan’s property (T). As it is
well known, G and Γ as above have property (T) for every r > 2 and for all q .
With this in mind, we find it plausible that one can take q0(r) = 2 in the above
theorem.

Note that such Γ contains a finite-index torsion-free group Λ. Proposition 4.4
implies that it suffices to prove thatΛ is (r−1)-Kazhdan. So one can assume that
Γ is torsion-free.

Theorem 4.5 for finite-dimensional Hilbert spaces is Theorem 8.3 in the
seminal paper of Garland [24]. The general case is stated in the last paragraph of
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Section 3.1 on page 631 in the work of Ballmann–Światkowski [6]. It is deduced
from Theorem 2.5 there that theorem asserts á la Garland [24] that the desired
cohomology vanishing follows from sharp estimates of the spectral gap of the
local Laplacians, that is, the Laplacians of the proper links of the complex. These
estimates (called also p-adic curvature) are given in [24, Lemmas 6.3 and 8.2]. So
altogether Theorem 4.5 is proven. The method and estimates of Garland are used
also in [37, 55] and more recently in [28, 35].

Let us give the reader just a notational warning: when we say rank (following
the common practice nowadays), we mean the K -rank of G as a p-adic group
(and we denoted it by r ) and then it follows that the dimension of the associated
Bruhat–Tits building is equal to r . Garland refers to the rank of the Tits system
which, in his notation, he denotes l + 1. Hence, our r is equal to his l.

It is very natural to wonder what happens in the analogous real case. It is worth
noting that already H 5(SLn(Z),R) is nontrivial for n large enough [11]; thus
SLn(Z) fails to be 5-Kazhdan for n large enough. Similarly, note that H 2(Sp(2n,
Z),R) = R for all n > 2 [11] so that the natural generalization to higher rank
lattices in real Lie groups has to be formulated carefully, maybe just by excluding
an explicit list of finite-dimensional unitary representations.

QUESTION 4.6. Is SLn(Z) 2-Kazhdan (at least for large n)?

5. Proofs of the main results

In order to finish the proofs of Theorem 1.1 and Theorem 1.2, we need to show
that finitely presented 2-Kazhdan groups are Frobenius-stable and that some of
them are not residually finite. The main result follows then from Corollary 5.4
and the constructions in Section 5.2.

5.1. The Frobenius stability of 2-Kazhdan groups. We now consider 2-
Kazhdan groups and asymptotic representations with respect to the Frobenius
norm. As

∏
n→U (Mkn (C), ‖·‖Frob) is a Hilbert space, the techniques of Section 3

can be applied and the defect of every asymptotic representation can be
diminished. We start by completing the proof of Theorem 1.2.

THEOREM 5.1. Let Γ be a finitely presented group. If Γ is 2-Kazhdan, then it is
Frobenius-stable.

Proof. Let Γ = 〈S | R〉. As mentioned, the ultraproduct

M‖·‖Frob
U :=

∏
n→U

(Mkn (C), ‖·‖Frob)
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is a Hilbert space and Γ acts on this space by invertible isometries, that is,
by unitaries; so H 2(Γ,M‖·‖Frob

U ) vanishes. In particular, the 2-cocycles defined
in Section 3 are always trivial. As noted, the bounds from Equation (3.2)
hold simultaneously for all asymptotic representations. This, combined with
Corollary 4.3, shows that there is a constant C such that for all asymptotic
representations ϕn : Γ → U(kn) with respect to ‖·‖Frob, we can choose the
1-cochain β associated with α so that it satisfies

2 max
s∈S
‖β(s)‖Frob 6 C.

Define the quantity

θ(ϕ) := HomDist(ϕ)− 2C def(ϕ)

for any map ϕ : S→ U(k) (for any k ∈ N). We note that if ϕn : S→ U(kn) is any
asymptotic representation, then limn→U θ(ϕn) > 0 and equality holds if and only
if ϕn is equivalent to a sequence of homomorphisms.

Now we fix a sequence (εn)n∈N of strictly positive real numbers such that
limn→U εn = 0 and let (kn)n∈N be a sequence of natural numbers. By the above,
we need to prove that for all sequences of εn-almost representations ψn : S →
U(kn), the quantity θ(ψn) tends to 0. For each n ∈ N, the set of εn-almost
homomorphisms ϕ : S → U(kn) is compact and since θ is continuous, there
is ϕn : S → U(kn) such that def(ϕn) 6 εn and ϕn maximizes θ for all n ∈ N.
Evidently, ϕn is an asymptotic representation. Thus, by Proposition 3.4 and
Theorem 3.6, there is an asymptotic representation ϕ′n : S → U(kn) such that
dist(ϕn, ϕ

′

n) 6 C def(ϕn) and

def(ϕ′n) 6
1
4 def(ϕn) (5.1)

for most n ∈ N. In particular, ϕ′n is also an εn-almost representation, and it follows
that for most n, we have

HomDist(ϕn) 6 HomDist(ϕ′n)+ C def(ϕn).

Furthermore, by maximality, we have that

HomDist(ϕ′n)− 2C def(ϕ′n) = θ(ϕ
′

n) 6 θ(ϕn) = HomDist(ϕn)− 2C def(ϕn),

and putting these estimates together, we get

HomDist(ϕ′n)− 2C def(ϕ′n) 6 HomDist(ϕ′n)− C def(ϕn) (5.2)

or

def(ϕn)
(5.2)
6 2 def(ϕ′n)

(5.1)
6 1

2 def(ϕn),
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which can only be the case if def(ϕn) = 0 for most n. But then, ϕn is really
a representation for most n ∈ N; so HomDist(ϕn) = 0 and we conclude
limn→U θ(ϕn) = 0. Since θ(ϕn) was chosen maximal, we conclude that
limn→U θ(ψn) = 0 for all εn-almost representations ψn .

REMARK 5.2. Small modifications of the proof show that the result is still
valid if one replaces ‖·‖Frob with any submultiplicative norm ‖·‖ and the 2-
Kazhdan assumption with a suitable cohomology vanishing assumption. To prove
Corollary 4.3 for other classes of Banach space coefficients, we need that the
class in question is stable under the ultraproduct Banach space construction from
Section 1.3. However, this extra condition is always satisfied, as it can be proved
that ultraproducts of the spaces M‖·‖U are isometrically isomorphic to M‖·‖V for a
(possibly) different ultrafilter V .

This, for instance, gives a sufficient condition for stability with respect to the
operator norm, where one could assume vanishing of second cohomology with
coefficients in a C∗-algebra, but it seems difficult to prove the existence of a group
Γ with such properties—a task that will already occupy the remaining sections in
the Hilbert space case.

REMARK 5.3. Note that Theorem 5.1 together with Proposition 4.4 imply that
virtually free groups are Frobenius-stable—a fact that seems cumbersome to
establish directly.

For the sake of reference, we formulate the following dichotomy, which is an
immediate corollary to Theorem 5.1, explicitly.

COROLLARY 5.4. Let Γ be a finitely presented 2-Kazhdan group. Then either

• Γ is residually finite or

• Γ is not Frobenius-approximated.

The techniques in Section 3 rely on submultiplicativity of the norm and thus
cannot be directly applied to the normalized Hilbert–Schmidt norm ‖·‖HS. It is
worth noting, though, that since 1

√
k
‖A‖Frob = ‖A‖HS 6 ‖A‖op 6 ‖A‖Frob for A ∈

Mk(C), we get the following immediate corollary to Theorem 5.1.

COROLLARY 5.5. Let Γ = 〈S | R〉 be a finitely presented 2-Kazhdan group and
let ϕn : S→ U(kn) be a sequence of maps such that

def(ϕn) = oU (k−1/2
n ),
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where the defect is measured with respect to either ‖·‖HS or ‖·‖op. Then ϕn is
equivalent to a sequence of homomorphisms.

Proof. Let ‖·‖ be the norm in question. Then

def‖·‖Frob(ϕn) 6
√

kn def‖·‖(ϕn) = oU (1).

In other words, ϕn is an asymptotic representation with respect to ‖·‖Frob; so by
Theorem 5.1, there are representations πn : Γ → U(kn) with

‖ϕn(s)− πn(s)‖ 6 ‖ϕn(s)− πn(s)‖Frob = oU (1)

for s ∈ S.

The preceding corollary provides some quantitative information about the
Connes’ Embedding Problem. Indeed, if a finitely presented, nonresidually finite,
2-Kazhdan group is UHS-approximated, then there is some upper bound on the
quality of the approximation in terms of the dimension of the unitary group.
Needless to say, it would be very interesting to decide if groups as above are
UHS-approximated.

5.2. Nonresidually finite 2-Kazhdan groups. In this section, we present
examples of finitely presented, nonresidually finite groups which are 2-Kazhdan
and hence finish the proof of Theorem 1.1. Note first that all the examples Γ
presented in Section 4.1 are residually finite. In this section, we will show that
some of these Γ ’s have finite central extensions

1→ C → Γ̃ → Γ → 1,

where C is a finite cyclic group and Γ̃ is not residually finite. Now, C being finite
is strongly n-Kazhdan for every n, and so, if Γ is 2-Kazhdan, then the same holds
for Γ̃ by Proposition 4.4. Hence, we may combine our results of this section with
the results from the previous section to obtain examples of 2-Kazhdan groups
which are not residually finite.

Our construction will imitate the construction of Deligne [18] of nonresidually
finite central extensions of some nonuniform arithmetic lattices in real Lie groups.
See also the work of Raghunathan [43, 44], where such central extensions were
constructed for some uniform lattices in Spin(2, n). These examples were later
used by Toledo [50] in his famous work showing the existence of algebraic
varieties with nonresidually finite fundamental groups. A short and very readable
exposition of Deligne’s argument was given by Witte Morris (see http://people.
uleth.ca/∼dave.morris/talks/deligne-torsion.pdf).
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Our examples are p-adic analogues of Deligne’s examples and his original
proof actually works for them. He assumed the algebraic group G to be isotropic
and hence got only nonuniform lattices as, at the time, the congruence subgroup
property was known only in such cases. Nowadays, we can argue for more general
lattices along the same lines.

Let D be the standard quaternion algebra over Z, defined as

D = Z〈i, j, k〉/(i2
= j 2

= k2
= −1, i j = k)

and set DR := R ⊗Z D for an arbitrary unital commutative ring R. It is well
known that DR is the Hamiltonian division algebra H, whereas DQp

∼= M2(Qp)

for p > 3, where the second isomorphism is basically a consequence of the fact
that the congruence x2

+ y2
= −1 can be solved modulo p. Consider also the

standard involution τ : DR → DR and let h : Dn
R × Dn

R → DR be the canonical
sesquilinear hermitian form on Dn

R , that is,

h((x1, . . . , xn), (y1, . . . , yn)) = x1τ(y1)+ · · · + xnτ(yn).

Consider now G(R) := SU(n, DR, h). Note that G(R) is simply the group formed
by those n × n-matrices with entries in DR such that the associated DR-linear
map preserves the form h. The functor G is an absolutely almost simple, simply
connected Q-algebraic group which is Q̄-isomorphic to Sp(2n) and hence of type
Cn; see [39, Section 2.3]. Embedding DR ⊂ M2(C), one can show that G(R)
is isomorphic to a simply connected compact Lie group of type Cn , namely the
quaternionic unitary group Sp(n) = U(2n) ∩ Sp(2n,C).

Let now p > 3 be a rational prime. Since D(Qp) ∼= M2(Qp), the group G
becomes split over Qp and G(Qp) is a noncompact group isomorphic to Sp(2n,
Qp). The group Γ := G(Z[1/p]) sits diagonally as a lattice in G(R) × G(Qp).
However, since G(R) is compact, this yields that

Γ = G(Z[1/p]) ⊂ G(Qp)

is also a lattice. It is a standard fact that lattices in Sp(2n,Qp) are cocompact,
basically since Sp(2n,Qp) admits a basis of neighborhoods of the identity that
consists of torsion-free subgroups. In this concrete case, we can identify Γ with
the group

U(2n) ∩ Sp(2n,Z[i, 1/p]).

It was proved by Rapinchuk [45] and Tomanov [51] that the group Γ =

G(Z[1/p]) has the congruence subgroup property. Let us explain what this
means in the adelic language: The group Γ is a subgroup of G(Q) and we can
define two topologies on G(Q) as follows. The first is the arithmetic topology,
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for which the arithmetic subgroups, that is, the subgroups commensurable to Γ
serve as a fundamental system of neighborhoods of the identity. The second is the
congruence topology for which we take as a basis of neighborhoods of the identity
only those arithmetic groups which contain, for some natural number m with
(m, p) = 1, one of the principal congruence subgroups

Γ (m) := ker(G(Z[1/p])→ G(Z/mZ)).

We denote by Ĝ(Q) the completion with respect to the arithmetic topology
and by G(Q) the completion with respect to the congruence topology. There is a
canonical surjective homomorphism

π : Ĝ(Q)→ G(Q).

The result of Rapinchuk and Tomanov [45, 51] combined with the work of Prasad–
Rapinchuk [41] says that in our case, π is an isomorphism of topological groups.

Now, by the strong approximation theorem, G(Q) is isomorphic to

G
(
A f \{p}

)
=

∏
l 6=p

∗G(Ql),

where
∏
∗ denotes the restricted product as usual and A f \{p} is a subring of the

Q-adeles A, the restricted product of Ql for all primes l 6= p. In particular, we get

G(A) = G(R)×G(Qp)×G(Q).

Now a result of Prasad [40] (see also Deodhar [19] and Deligne [18]) says that
for every p, G(Qp) has a universal central extension

1→ C(p)→ G̃(Qp)→ G(Qp)→ 1,

where C(p) denotes the group of roots of unity in Qp, that is, a cyclic group of
order p − 1. We denote by Γ̃ and by G̃(Q) the inverse images of Γ and G(Q)
under the quotient map in the above extension.

We claim that if p > 5, then the group Γ̃ is not residually finite.

PROPOSITION 5.6. Every finite-index subgroup of Γ̃ contains the unique
subgroup of index 2 in C(p). In particular, if p > 5, Γ̃ is not residually finite.

Proof. To prove this, we will lift the arithmetic topology from G(Q) to its central
extension G̃(Q) as follows. We define the arithmetic topology on G̃(Q) as the
topology for which all subgroups commensurable to Γ̃ serve as a fundamental
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system of neighborhoods of the identity. We denote by ̂̃G(Q) its Hausdorff
completion. It is clear from the definition that there exists a central extension
of topological groups

1→ Z → ̂̃G(Q)→ Ĝ(Q)→ 1,

where Z is a quotient of C(p), say by the quotient homomorphism µ : C(p)→ Z ,
where ker(µ) is exactly the intersection of all the finite-index subgroups of Γ̃ . The
ultimate goal is to show that if p > 5, then ker(µ) is nontrivial which would show
that Γ̃ is not residually finite. Define now

Ẽ := G(R)× G̃(Qp)×
̂̃G(Q)

and observe that it maps onto G(R) × G(Qp) × Ĝ(Q) = G(A) with kernel 1 ×
C(p)× Z . Finally, we set

E =
Ẽ

{(1, a, b) ∈ 1× C(p)× Z | b = µ(a)}
.

Now, the group E is a central extension of G(A) with kernel isomorphic to Z .
Moreover, we also see from the definitions that the natural diagonal map G̃(Q)→
Ẽ → E sends a ∈ C(p) ⊂ G̃(Q) to (1, a, µ(a)) and hence factors through a
homomorphism G(Q)→ E . This shows that the central extension

1→ Z → E → G(A)→ 1

splits over the subgroup G(Q) of G(A). Note that since G(Q) is perfect, the same
applies to G(A). Then a result on G(A) going back to Moore [33] for split groups
and Prasad–Rapinchuk [41] for the general case asserts that the universal central
extension of G(A) that splits over G(Q) has, in the case of our G, a kernel of
order 2—basically since the groups of roots of unity in Q is {±1}. Hence, we can
conclude that |Z | 6 2. This proves the first part. More specifically, this shows that
the kernel of the map from the profinite completion ̂̃Γ of Γ̃ , which is realized as

a compact-open subgroup of ̂̃G(Q), to the profinite completion Γ̂ of Γ , which
is realized as a compact-open subgroup of Ĝ(Q) = G(Q), is of order at most 2.
Hence, every finite-index subgroup of Γ̃ contains the index 2 subgroup of C(p)
in the center of Γ̃ .

Now, if p > 5, then 2< p−1, and this proves that Γ̃ is not residually finite.

In conclusion, since Γ̃ is 2-Kazhdan, by Theorem 4.5 and Proposition 4.4, it
cannot be Frobenius-approximated by Corollary 5.4. This finishes the proof of
Theorem 1.1.
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